Analog electronics, Basic concepts, Projects

Star and delta configurations

In addition to parallel and series, impedances also can make star and delta connections. Also are shown the transformations.

Star and delta connections

star and delta connections
On the left, resistors linked in delta and on the right, star. Source: electrical4u.

Some sources label delta connection as pi and star as T.

Star-delta transformation (Y-Δ)

transformations
Source: EletroWorld.

Equations to transform a star configuration to delta.

Ra=\frac{R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}}{R_{1}}

Rb=\frac{R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}}{R_{2}}

Rc=\frac{R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}}{R_{3}}

Delta-star transformation (Δ-Y)

Equations for (Δ-Y) transformation.

R_{1}=\frac{RbRc}{Ra+Rb+Rc}

R_{2}=\frac{RaRc}{Ra+Rb+Rc}

R_{3}=\frac{RaRb}{Ra+Rb+Rc}

If all resistors are equal, the equations become much simpler. Considering R_{Y} as resistor value in star and R_{\Delta } of resistor in delta.

R_{Y}=\frac{R_{\Delta }}{3}

R_{\Delta }=3\cdot R_{Y}

Transformation with capacitors and coils

What if instead of resistors, we have capacitors and coil?

Demonstrating the equation of (Δ-Y) transformation for capacitors.

\frac{1}{c_{1}}=\frac{\frac{1}{C_{2}C_{3}}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}

c_{1}=\frac{C_{2}C_{3}+C_{3}C_{1}+C_{1}C_{2}}{C_{1}}

c_{2}=\frac{C_{2}C_{3}+C_{3}C_{1}+C_{1}C_{2}}{C_{2}}

c_{3}=\frac{C_{2}C_{3}+C_{3}C_{1}+C_{1}C_{2}}{C_{3}}

Equations for inverse transformation (Y-Δ).

\frac{1}{C_{1}}=\frac{\frac{1}{c_{1}c_{2}}+\frac{1}{c_{1}c_{3}}+\frac{1}{c_{2}c_{3}}}{\frac{1}{c_{1}}}

C_{1}=\frac{c_{2}c_{3}}{c_{1}+c_{2}+c_{3}}

C_{2}=\frac{c_{1}c_{3}}{c_{1}+c_{2}+c_{3}}

C_{3}=\frac{c_{1}c_{2}}{c_{1}+c_{2}+c_{3}}

And for inductors, the calculations are similar to resistors.

configurations with coils
Source: toppr.

Equivalent values from Y to Δ.

L_{RS}=\frac{L_{R}L_{S}+L_{S}L_{T}+L_{R}L_{T}}{L_{T}}

L_{RT}=\frac{L_{R}L_{S}+L_{S}L_{T}+L_{R}L_{T}}{L_{S}}

L_{ST}=\frac{L_{R}L_{S}+L_{S}L_{T}+L_{R}L_{T}}{L_{R}}

Equivalent values from Δ to Y.

L_{R}=\frac{L_{RS}L_{RT}}{L_{RS}+L_{RT}+L_{ST}}

L_{S}=\frac{L_{RS}L_{ST}}{L_{RS}+L_{RT}+L_{ST}}

L_{T}=\frac{L_{ST}L_{RT}}{L_{RS}+L_{RT}+L_{ST}}

And for impedances.

impedances
Source: Wikimedia.

Conversion from Y to Δ.

Z_{ac}=\frac{Z_{a}Z_{c}+Z_{a}Z_{b}+Z_{b}Z_{c}}{Z_{b}}

Z_{ab}=\frac{Z_{a}Z_{c}+Z_{a}Z_{b}+Z_{b}Z_{c}}{Z_{c}}

Z_{bc}=\frac{Z_{a}Z_{c}+Z_{a}Z_{b}+Z_{b}Z_{c}}{Z_{a}}

Conversion from Δ to Y.

Z_{a}=\frac{Z_{ab}Z_{ac}}{Z_{ab}+Z_{ac}+Z_{bc}}

Z_{b}=\frac{Z_{ab}Z_{bc}}{Z_{ab}+Z_{ac}+Z_{bc}}

Z_{c}=\frac{Z_{ac}Z_{bc}}{Z_{ab}+Z_{ac}+Z_{bc}}

3 problem examples

Let’s find the value of I current in this circuit.

Problem 1 with star and delta

Converting internal star in delta.

R_{\Delta }=3\cdot R_{Y}

R_{\Delta }=3\cdot 6=18 \Omega

Problem 1 with 2 deltas

3 resistor pairs are in parallel. Just simplify the circuit to find I current.

Simplified problem 1

Rt=\frac{9\cdot 18}{9+18}=6\Omega

I=\frac{42}{6}=8A

How to calculate I current in this circuit?

Replacing R1, R2 and R3 with (Δ-Y) tranformation.

Ra=\frac{4,7k\cdot 1,1k}{4,7k+1,1k+6,8k}=\frac{5,17k}{12,6}=0,41k\Omega

Rb=\frac{4,7k\cdot 6,8k}{4,7k+1,1k+6,8k}=\frac{31,96k}{12,6}=2,53k\Omega

Rc=\frac{1,1k\cdot 6,8k}{4,7k+1,1k+6,8k}=\frac{7,48k}{12,6}=0,59k\Omega

With simplified circuit, becomes easier to calculate current.

Problem 2 2
Problem-2-3-1

Rt=\frac{9,33k\cdot 7,39k}{16,72k}=4,12k\Omega

I=\frac{8}{0,41k+4,12k}=1,76mA

How to find total resistance of this resistor association?

Problem 3 of star and delta

Putting this cube in a shape that allows to visualize a group of resistors for conversion.

Problem-3-2 about star and delta

R_{Y}=\frac{R_{\Delta }}{3}=\frac{9}{3}=3\Omega

Converting delta on the left in star.

R_{a}=R_{b}=\frac{R1\cdot R2}{R1+R2+R7}=\frac{9\cdot 12}{33}=3,27\Omega

R_{c}=\frac{12\cdot 12}{9+12+12}=4,36\Omega

R7+R8=12,27\Omega

R2+R6=7,36\Omega

\frac{12,27\cdot 7,36}{12,27+7,36}=4,6\Omega

3,27+4,6=7,87\Omega

Finally, the total resistance is:

Rt=\frac{9\cdot 7,87}{9+7,87}=4,19\Omega

About Pedro Ney Stroski

Leave a Reply

Your email address will not be published. Required fields are marked *