Analog electronics, Electronic components, Hobby, Projects, Semiconductors, Tutorial

2 common collector BJT amplifier projects

In this post, it is shown another type of amplifier configuration using BJT. This time, it is the common collector or emitter follower.

To know about the BJT transistor’s operation, click on this link.

BJT operationClick here

Common collector amplifier with NPN transistor

The chosen transistor was the 2N3904, whose datasheet is on this link.

Calculating resistors linked to transistor’s base

First, you must determine the voltage on transistor’s base. This value must be lower than supply voltage (VccVcc) and higher than base-emitter voltage (VBEV_{BE}).

The 2N3904’s datasheet shows the possible range of VBEV_{BE}. For this project, the chosen value is 0.65V. Source: 2N3904 datasheet.

The formula to obtain voltage base (VbV_{b}).

Vb=VBE+(VccVbe)2V_{b}=V_{BE}+\frac{(V_{cc}-V_{be})}{2}

VccV_{cc} value was chosen arbitrarily as 8V.

Vb=0.65+(80.65)2=4.325VV_{b}=0.65+\frac{(8-0.65)}{2}=4.325V

Using the voltage division equation.

Vb=Rb2Rb2+Rb1VccV_{b}=\frac{R_{b2}}{R_{b2}+R_{b1}}\cdot V_{cc}

4.325=Rb2Rb2+Rb184.325=\frac{R_{b2}}{R_{b2}+R_{b1}}\cdot 8

0.5406=Rb2Rb1+Rb20.5406=\frac{R_{b2}}{R_{b1}+R_{b2}}

Rb1=0.8498Rb2R_{b1}=0.8498\cdot R_{b2}

The closest commercial values of Rb1R_{b1} and Rb2R_{b2} that meet this proportion are 1kΩ and 1.2kΩ, respectively.

Calculating resistance on emitter

Calculating emitter voltage.

VBE=VbVeV_{BE}=V_{b}-V_{e}

0.65=4.325Ve0.65=4.325-V_{e}

Ve=3.675VV_{e}=3.675V

To design the resistor Re, it’s necessary define the emitter current (IeI_{e}). The arbitrarily defined value is 10mA, because it’s a safe value to prevent transistor overheating.

Ve=ReIeV_{e}=R_{e}\cdot I_{e}

Re=367.5ΩR_{e}=367.5\Omega

The closest available commercial value is 470Ω, which produces an emitter current of 7.81mA.

Designing capacitors

The formula to calculate the input capacitor Ci.

Ci=12πfRiCi=\frac{1}{2\pi f\cdot Ri}

Where RiRi is the input resistance saw by Ci capacitor.

Ri=Rb1Rb2βreRi=R_{b1}||R_{b2}||\beta r_{e}

In this case, it wasn’t possible to measure β of transistor on multimeter. On “ON CHARACTERISTICS” part of datasheet shown before, the gain range goes from 100 to 300, when collector current (ICI_{C}) is 10mA. The gain can be considered as 100. Calculating rer_{e} and RiRi.

re=26mVIE=26m7,81m=3,329Ωr_{e}=\frac{26mV}{I_{E}}=\frac{26m}{7,81m}=3,329\Omega

Rb1Rb2=Rb1Rb2Rb1+Rb2=523ΩR_{b1}||R_{b2}=\frac{R_{b1}\cdot R_{b2}}{R_{b1}+R_{b2}}=523\Omega

βre=332,9\beta\cdot r_{e}=332,9

Ri=523332,9523+332,9=203,42ΩRi=\frac{523\cdot 332,9}{523+332,9}=203,42\Omega

With cut frequency 20Hz, input capacitance is:

Ci=39,119106FCi=39,119\cdot 10^{-6}F

The closest commercial value is 47106F47\cdot 10^{-6}F or 47μF. When higher Ci capacitance, lower will be the cut frequency. Below is the equation to calculate capacitance of Co.

Co=12πfRoCo=\frac{1}{2\pi \cdot f\cdot Ro}

The formula to calculate the output resistance saw by capacitor.

Ro=Rb1Rb2βRo=\frac{R_{b1}||R_{b2}}{\beta}

Ro=5,23ΩRo=5,23\Omega

Co=1521,5μFCo=1521,5\mu F

The closest commercial value is 2200μF2200\mu F.

Common collector amplifier with PNP transistor

In this project, it’s used the PNP transistor 2N3906, whose datasheet is on this link.

Calculating the resistors linked to transistor base

Using the same procedure on previous project, considering negative voltages. The chosen supply voltage is -9V. The base-emitter voltage (VBEV_{BE}) is -0.65V.

VB=VBE+VCCVBE2V_{B}=V_{BE}+\frac{V_{CC}-V_{BE}}{2}

VB=0.65+9+0.652=4.825VV_{B}=-0.65+\frac{-9+0.65}{2}=-4.825V

VB=Rb2VCCRb2+Rb1V_{B}=\frac{R_{b2}\cdot V_{CC}}{R_{b2}+R_{b1}}

4.825=9Rb2Rb2+Rb1-4.825=\frac{-9\cdot R_{b2}}{R_{b2}+R_{b1}}

1.15Rb1=Rb21.15R_{b1}=R_{b2}

The commercial values of Rb1R_{b1} and Rb2R_{b2} are 1kΩ e 1.2kΩ, respectively. Calculating Re resistance, whose emitter current (IEI_{E}) is 15mA, a value arbitrarily chosen.

VBE=VBVEV_{BE}=V_{B}-V_{E}

VE=4,175VV_{E}=-4,175V

VE=REIEV_{E}=R_{E}\cdot I_{E}

RE=278ΩR_{E}=278\Omega

The commercial value is 330Ω, resulting in a IEI_{E} of -12.6mA. Calculating Ci and Co values.

Ci=12πfRiCi=\frac{1}{2\pi f\cdot Ri}

I choose the cut frequency ff as 5000Hz.

Ri=Rb1Rb2βreRi=R_{b1}||R_{b2}||\beta r_{e}

β\beta can also be considered as 100.

re=26mIE=2,63Ωr_{e}=\frac{26m}{\left| I_{E}\right|}=2,63\Omega

βre=263\beta r_{e}=263

Rb1//Rb2=1k1,2k2,2k=545ΩR_{b1}//R_{b2}=\frac{1k\cdot 1,2k}{2,2k}=545\Omega

Ri=545263545+263=177,39ΩRi=\frac{545\cdot 263}{545+263}=177,39\Omega

Ci=12π5000177,39=179,44109FCi=\frac{1}{2\pi 5000\cdot 177,39}=179,44\cdot 10^{-9} F

Ci commercial value is 100nF. Designing Co.

Co=12πfRoCo=\frac{1}{2\pi f\cdot Ro}

Ro=Rb1//Rb2β=5,45ΩRo=\frac{R_{b1}//R_{b2}}{\beta}=5,45\Omega

Co=12π50005,45=5,84106FCo=\frac{1}{2\pi 5000\cdot 5,45}=5,84\cdot 10^{-6}F

The closest commercial value is 10μF.

Common collector amplifiers video

In the video, blue signal is the input and yellow is output. The type of amplifier gain is 1, therefore, output signal isn’t amplified.

About Pedro Ney Stroski

Leave a Reply

Your email address will not be published. Required fields are marked *